

tionX 3.4. Models and libraries are stored on hard
disk as .mo files. Both tools are able to read these
files with no specific modification, i. e. they use ex-
actly the same files for displaying exactly the same
structure. Figure 4 shows a screenshot of the direct-
ory structure and the integration in every tool.
This proves that one design goal of Modelica and the
Modelica Standard Library (MSL) has been reached
now, namely to provide a tool-vendor independent
representation format for simulation models. There
are however still a few issues to be solved to fully
reach vendor independence of the MSL:

• The definition of tables in Modelica Stand-
ard Library is based on external functions.
The implementation of these functions is not
part of the library itself and has to be done
by tool vendors. In consequence of missing
specification the different implementations
are not completely compatible.

• With the exclusive usage of external func-
tions it is difficult to adapt the implementa-
tion on the requirements of the underlying
tool. The substitution of external functions
by external objects would improve the im-
plementation capabilities.

• For users of a Modelica tool it is difficult to
decide whether a used construct is compat-
ible to Modelica language specification or
not (e. g. classDirectory function). All tool
dependent extensions of Modelica language
should be marked as vendor specific similar
to existing vendor specific annotations.

• Modelica libraries often use different version
of annotations for graphical objects or attrib-
utes which are invalid in the particular con-
text (e.g. fillColor for lines). While several
tools ignore such annotations other programs
generate error messages, which can be a
little bit confusing for users and developers.
For that reason a stronger validation of an-
notations would be preferable.

To create a Software in the Loop setup, the Modelica
model is then exported. In previous years, the C code
generated by either Dymola or SimulationX from a
given Modelica model has been wrapped and com-
piled for execution by one of the SiL tools described
in Section 3. For export, special wrapper code had to
be developed for each simulation tool, and even for
each version of such a tool, which was time consum-
ing and error prone. Daimler started recently to use
the FMI [8] developed within the Modelisar project
as an export format for Modelica models. This stand-
ard is supported by the latest versions of Simula-
tionX, Dymola, and Silver. This removes the need to
maintain version and vendor specific wrapper code,
which further improves and speeds up the SiL-based
development process.

� ����	� � ��������� � ��	���� � ����

�����	����������

Daimler uses Silver [5] and its in-house predecessor
Backbone to virtually integrate vehicle models and
control software on Windows PCs. Tools such as Sil-
ver or Backbone are mainly needed to support vari

������
$	
%�������
��&����
'��
��
���������(
���
)�����

ous standards and quasi-standards used for automot-
ive software development. Developers are familiar
with these standards and know how to use them.
Data is available in these formats already as part of
the existing tool chain and reuse is virtually free of
cost. Furthermore, using these data sources in the
virtual development process allows early validation
of these data sources. A virtual development envir-
onment should therefore mimic, emulate, or else how
support these standards. A few examples of how the
SiL tool supports automotive standards is shown in
Fig. 5.
Developers typically use tools such as CANape
(Vector) or INCA (ETAS) to measure signals and
calibrate (fine-tune) parameters of the control soft-
ware in the running car or on a test rig using standard
protocols such as CCP or XCP. The SiL environment
implements this protocol. Seen from a measurement
tool such as CANape, a SiL simulation behaves just
like a real car. Developers can therefore attach his fa-
vorite measurement tool to the SiL to measure and
calibrate using the same measurement masks, data
sources and procedures they are using in a real car.
Likewise, automotive developers use MDF files to
store measurements. The SiL can load and save this
file format. A measured MDF file can e. g. be used
to drive a SiL simulation.
Another example is A2L. This is a database format
used to store key information about variables and
(tunable) parameters of automotive control software.
A2L contains e. g. the address of variables in the

ECU, its physical unit, comment and scaling inform-
ation that tells how to convert the raw integer value
to a physical value. The SiL-environment reads A2L
files and uses the information to automate many

Having all these standards available in the SiL eases
the task of actually getting automotive control soft-
ware running on a PC, and doing useful things with
the resulting setup. Control software is typically de-
composed into a number of so-called tasks (i. e.
functions implemented in C) that are run by an
RTOS (real-time operating system) such as OSEK.
Many tasks are periodically executed with a fixed
rate, e. g. every 10 ms. To get such tasks running in
SiL, the user has to build an adapter as shown in
Fig. 5, i. e. a little C program that implements the
Silver module API and emulates the RTOS by call-
ing each task once at every (or every 2nd, 3rd, ...)
SiL macro step. The SiL tool is shipped with the
SBS (Silver Basis Software), i. e. C sources that
make it easy to build such an adapter by adapting
template adapter code. A cheap alternative to writing
an adapter is to use the SiL tool's support for MAT-
LAB/Simulink and Realtime Workshop (RTW).
Automotive software is often developed by first cre-
ating a model of the controller using Simulink. The

software versions by comparing all signals
computed by these versions. This is e. g.
useful when checking for equivalence after
refactoring or clean up of modules.

• ��������: A SiL simulation can be driven by
a script, written e. g. in Python. This can be
used to implement optimization procedures,
for performing tests, or to trigger self-learn-
ing algorithms that adapt the control soft-
ware to certain properties of the (simulated)
car, e. g. to compensate aging of compon-
ents.

• ��������
 �����: In conjunction with the
test case generator TestWeaver, the SiL tool
allows the systematic testing of control soft-
ware. TestWeaver generates thousands of
test cases which are then executed by the SiL
tool.

• ������
 ���������
 �����: calculation of
load collectives for gearbox and drivetrain,
e. g. to develop and test measures for safe-
guarding of the drivetrain components.

• .���������/'���&�����: of the control soft-
ware on the PC.

������
!	
.
��&�����
������
�
������
A typical use case of the SiL tool is shown in Fig. 7.
The test case generator TestWeaver [8] has found a
scenario where the control software of a transmission
performs a division by zero. This is clearly a bug.
The user replays the recorded scenario, with Mi-
crosoft Visual Studio attached to the SiL tool. When
the division by zero occurs, the debugger pops up as
shown in the figure, showing the line in the control-
ler source code that causes the exception.

# $������	���	����

Main cost factors of using the simulation-based tool
chain for automotive software development are

• ����������
���
����������
��
��
�������
���
�����: Here is where modern modeling
languages and tools such as Modelica and
SimulationX help reduce costs by reuse of
components and easy parameterization

• ���������
����&�����
������ to keep such a
model up to date with the plant simulated:
SimulationX allows continuous enhance-
ments based on existing models and libraries
by replacing components and models of
varying complexity throughout all develop-
ment phases. Reusing models including all
interfaces necessary for calibration in com-
bination with a wide range of tool options,
e. g. VariantsWizard, COM-scripting or op-
timization tools, leads to an increasing effi-
ciency in the workflow.

• 0�������
��
������
����
���
��
���������

�������: With the introduction of the Silver
Basic Software package, this effort is signi-
ficantly reduced.

Despite continuing cost-reduction efforts, these in-
vestments are still significant.
They are compensated by the benefits of such a Soft-
ware in the Loop setup for developing control soft-
ware, namely

• �1������
 ���
 ����������
 ������: due to
comfortable integration of software and
vehicle components on the PC of the de-
veloper. This helps to detect problems early.

• �1������
 ��&������
���
 ��
 ������, e. g.
with Microsoft Visual Studio Debugger or
QTronic TestWeaver [1,2,3,6]. Found prob-
lems can be exactly reproduced as often as
needed.

• ���������2�
��
����������
�������: A SiL
configuration can easily be duplicated at low
cost. This way, every member of a team can
use its personal 'virtual' development envir-
onment 24 hours a day, without blocking
rare resources like HiL test rigs, or physical
prototypes.

• s������
������
�����
�������
34: All mem-
bers of a team exchange working results by
exchanging compiled modules (DLLs), not
sources. This helps to protect intellectual
property.

• �1������
�����
�����&�����
�����
����

����: Our SiL runs modules (simulation
models, control software) developed using

very different tools without accessing these
tools. This greatly reduces the complexity of
the SiL setups (no tool coupling).

% $�	������	

We presented the tool chain used by Daimler for
simulation-based development of transmission con-
trol software. The environment is based on Model-
ica, provides build-in support for automotive stand-
ards, imports vehicle models via the standard FMI
and uses these models to perform closed-loop simu-
lation of automotive control software. The virtual de-
velopment environment created this way helps to
shorten development cycles, eases test and debug-
ging, helps to parallelize and hence to speed up de-
velopment and provides a convenient platform for
collaboration between Daimler's transmission devel-
opment departments and its suppliers and engineer-
ing service providers.

��&	������	��
Our work on the FMI [8] presented here has been
funded by the Federal Ministry for Education and
Science (BMBF) within the ITEA2 project MODEL-
ISAR (Förderkennzeichen 01IS08002).

'��	��

[1] A. Rink, E. Chrisofakis, M. Tatar: Automating
Test of Control Software - Method for Auto-
matic TestGeneration. ATZelektronik 6/2009
Volume 4, pp. 24-27.

[2] H. Brückmann, J. Strenkert, U. Keller, B. Wies-
ner, A. Junghanns: Model-based Development
of a Dual-Clutch Transmission using Rapid
Prototyping and SiL. International VDI Con-
gress Transmissions in Vehicles 2009,
Friedrichshafen, Germany, 30.06.-01-07.2009

[3] M. Hart, R. Schaich, T. Breitinger, M. Tatar:
Automated test of the AMG Speedshift DCT
control software 9th International CTI Sym-
posium Innovative Automotive Transmissions,
Berlin, 30.11. - 01.12.2010, Berlin, Germany.

[4] SimulationX, http://www.simulationx.com/
[5] Silver, http://qtronic.de/en/silver.html
[6] A. Junghanns, J. Mauss, M. Tatar: TestWeaver

- A Tool for Simulation-based Test of Mechat-
ronic Designs. 6th International Modelica Con-
ference, Bielefeld, March 3 - 4, 2008, pp. 341 -
348, 2008.

[7] Hilf, Matheis, Mauss, Rauh: .������
�����
�����
��
���������
�
 ����
��
)���������

��
 �
 '��������
 ��&���2����
 �������5 6th
IFAC Symposium on Advances in Automotive
Control, Munich, Germany, July 12 - 14, 2010.

[8] FMI Specification 1.0, available for free from
http://www.functional-mockup-interface.org/

	1 Introduction
	2 Vehicle models
	3 Getting automotive control software into the loop
	4 Using the system model during automotive development
	5 Costs and benefits
	6 Conclusion

