




tionX 3.4. Models and libraries are stored on hard 
disk as .mo files. Both tools are able to read these 
files with no specific modification, i. e. they use ex-
actly the same files for displaying exactly the same 
structure. Figure 4 shows a screenshot of the direct-
ory structure and the integration in every tool.
This proves that one design goal of Modelica and the 
Modelica Standard Library (MSL) has been reached 
now,  namely to provide a tool-vendor  independent 
representation format  for simulation models.  There 
are however still a few issues to be solved to fully 
reach vendor independence of the MSL:

• The definition of tables in Modelica Stand-
ard Library is  based on external  functions. 
The implementation of these functions is not 
part of the library itself and has to be done 
by tool vendors. In consequence of missing 
specification  the  different  implementations 
are not completely compatible.

• With the exclusive usage of  external  func-
tions it is difficult to adapt the implementa-
tion on the requirements  of  the  underlying 
tool.  The  substitution of  external  functions 
by external  objects would improve the im-
plementation capabilities.

• For users of a Modelica tool it is difficult to 
decide whether a used construct is compat-
ible  to  Modelica  language  specification  or 
not  (e. g.  classDirectory function).  All  tool 
dependent extensions of Modelica language 
should be marked as vendor specific similar 
to existing vendor specific annotations.

• Modelica libraries often use different version 
of annotations for graphical objects or attrib-
utes which are invalid in the particular con-
text (e.g. fillColor for lines).  While several 
tools ignore such annotations other programs 
generate  error  messages,  which  can  be  a 
little bit confusing for users and developers. 
For that reason a stronger validation of an-
notations would be preferable.

To create a Software in the Loop setup, the Modelica 
model is then exported. In previous years, the C code 
generated by either Dymola or SimulationX from a 
given Modelica model has been wrapped and com-
piled for  execution by one of the SiL tools described 
in Section 3. For export, special wrapper code had to 
be developed for each simulation tool, and even for 
each version of such a tool, which was time consum-
ing and error prone. Daimler started recently to use 
the FMI [8] developed within the Modelisar project 
as an export format for Modelica models. This stand-
ard  is  supported  by the  latest  versions  of  Simula-
tionX, Dymola, and Silver. This removes the need to 
maintain version and vendor specific wrapper code, 
which further improves and speeds up the SiL-based 
development process.
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Daimler uses Silver [5] and its in-house predecessor 
Backbone to virtually integrate vehicle models and 
control software on Windows PCs. Tools such as Sil-
ver or Backbone are mainly needed to support vari
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ous  standards and quasi-standards used for automot-
ive  software  development.  Developers  are  familiar 
with  these  standards  and  know  how  to  use  them. 
Data is available in these formats already as part of 
the existing tool chain and reuse is virtually free of 
cost.  Furthermore,  using  these  data  sources  in  the 
virtual development process allows early validation 
of these data sources. A virtual development envir-
onment should therefore mimic, emulate, or else how 
support these standards. A few examples of how the 
SiL tool supports automotive standards is shown in 
Fig. 5.
Developers  typically  use  tools  such  as  CANape 
(Vector)  or  INCA (ETAS)  to  measure  signals  and 
calibrate (fine-tune) parameters of the control soft-
ware in the running car or on a test rig using standard 
protocols such as CCP or XCP. The SiL environment 
implements this protocol. Seen from a measurement 
tool such as CANape, a SiL simulation behaves just 
like a real car. Developers can therefore attach his fa-
vorite measurement tool to the SiL to measure and 
calibrate  using the same  measurement  masks,  data 
sources and procedures they are using in a real car.
Likewise,  automotive developers use MDF files to 
store measurements. The SiL can load and save this 
file format. A measured MDF file can e. g. be used 
to drive a SiL simulation.
Another example is A2L. This is a database format 
used  to  store  key  information  about  variables  and 
(tunable) parameters of automotive control software. 
A2L contains e. g. the address of variables in the 

ECU, its physical unit, comment and scaling inform-
ation that tells how to convert the raw integer value 
to a physical value. The SiL-environment reads A2L 
files  and  uses  the  information  to  automate  many 



Having all these standards available in the SiL eases 
the task of actually getting automotive control soft-
ware running on a PC, and doing useful things with 
the resulting setup. Control software is typically de-
composed  into  a  number  of  so-called  tasks  (i. e. 
functions  implemented  in  C)  that  are  run  by  an 
RTOS (real-time operating system) such as OSEK. 
Many tasks  are  periodically  executed with a  fixed 
rate, e. g. every 10 ms. To get such tasks running in 
SiL,  the  user  has  to  build an adapter  as  shown in 
Fig. 5,  i. e.  a  little  C program that  implements  the 
Silver module API and emulates the RTOS by call-
ing each task once at every (or every 2nd, 3rd, ...)  
SiL macro  step.  The  SiL tool  is  shipped with  the 
SBS  (Silver  Basis  Software),  i. e.  C  sources  that 
make  it  easy to build such an adapter by adapting 
template adapter code. A cheap alternative to writing 
an adapter is to use the SiL tool's support for MAT-
LAB/Simulink  and  Realtime  Workshop  (RTW). 
Automotive software is often developed by first cre-
ating a model of the controller using Simulink. The 



software versions by comparing all  signals 
computed  by  these  versions.  This  is  e. g. 
useful  when checking for equivalence after 
refactoring or clean up of modules.

• ��������: A SiL simulation can be driven by 
a script, written e. g. in Python. This can be 
used to implement optimization procedures, 
for performing tests, or to trigger self-learn-
ing  algorithms  that  adapt  the  control  soft-
ware to certain properties of the (simulated) 
car,  e. g.  to  compensate  aging  of  compon-
ents.

• �������� 
 �����:  In  conjunction  with  the 
test case generator TestWeaver, the SiL tool 
allows the systematic testing of control soft-
ware.  TestWeaver  generates  thousands  of 
test cases which are then executed by the SiL 
tool.

• ������ 
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 �����:  calculation  of 
load collectives for gearbox and drivetrain, 
e. g. to develop and test measures for safe-
guarding of the drivetrain components.

• .���������/'���&�����: of the control soft-
ware on the PC.
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A typical use case of the SiL tool  is shown in Fig. 7. 
The test case generator TestWeaver [8] has found a 
scenario where the control software of a transmission 
performs a division by zero. This is clearly a bug. 
The  user  replays  the  recorded  scenario,  with  Mi-
crosoft Visual Studio attached to the SiL tool. When 
the division by zero occurs, the debugger pops up as 
shown in the figure, showing the line in the control-
ler source code that causes the exception.
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Main cost factors of using the simulation-based tool 
chain for automotive software development are
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languages  and tools  such  as  Modelica  and 
SimulationX help reduce costs  by reuse of 
components and easy parameterization

• ���������
����&�����
������ to keep such a 
model  up to date with the plant  simulated: 
SimulationX  allows  continuous  enhance-
ments based on existing models and libraries 
by  replacing  components  and  models  of 
varying complexity throughout all  develop-
ment  phases.  Reusing models  including all 
interfaces necessary for calibration in com-
bination with a wide range of tool options, 
e. g. VariantsWizard, COM-scripting or op-
timization tools, leads to an increasing effi-
ciency in the workflow.
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�������: With the introduction of the Silver 
Basic Software package, this effort is signi-
ficantly reduced.

Despite  continuing  cost-reduction  efforts,  these  in-
vestments are still significant.
They are compensated by the benefits of such a Soft-
ware in the Loop setup for developing control soft-
ware, namely
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 ������:  due  to 
comfortable integration  of  software  and 
vehicle  components  on  the  PC  of  the  de-
veloper. This helps to detect problems early.
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with  Microsoft  Visual  Studio  Debugger  or 
QTronic TestWeaver [1,2,3,6]. Found prob-
lems can be exactly reproduced as often as 
needed.

• ���������2�
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�������: A SiL 
configuration can easily be duplicated at low 
cost. This way, every member of a team can 
use its personal 'virtual' development envir-
onment  24  hours  a  day,  without  blocking 
rare resources like HiL test rigs, or physical 
prototypes.
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34: All mem-
bers of a team exchange working results by 
exchanging compiled  modules  (DLLs),  not 
sources.  This  helps  to  protect  intellectual 
property.
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����:  Our  SiL runs  modules  (simulation 
models,  control  software)  developed  using 



very different tools without accessing these 
tools. This greatly reduces the complexity of 
the SiL setups (no tool coupling).
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We  presented  the  tool  chain  used  by  Daimler  for 
simulation-based development  of transmission con-
trol software. The environment is based on Model-
ica, provides build-in support for automotive stand-
ards,  imports  vehicle models via the standard FMI 
and uses these models to perform closed-loop simu-
lation of automotive control software. The virtual de-
velopment  environment  created  this  way  helps  to 
shorten  development  cycles,  eases  test  and  debug-
ging, helps to parallelize and hence to speed up de-
velopment  and provides  a  convenient  platform for 
collaboration between Daimler's transmission devel-
opment departments and its suppliers and engineer-
ing service providers.
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