

and tested using test rigs, HiL systems, and road tests. The test and validation res-
ults are fed back to the developers, which closes the development cycle. This pro-
cess, although standard in the automotive industry today, has two major drawbacks:

 a single iteration takes days or weeks: feedback reaches developers late
 the process depends on prototype vehicles and test rigs. These are typically

scarce and expensive resources during development. Their limited availability
causes additional delays during development.

This paper demonstrates how to improve the process. The key idea is to provide
each development engineer with a virtual ECU. This can be simulated, calibrated
and measured on the developer's laptop - either in closed-loop with a vehicle simula-
tion model, or in real-time for rapid control prototyping. This way, more development
tasks can be performed faster and cheaper on the developer's laptop. As experience
shows, this helps to shorten development cycles and to reduce the critical depend-
ency on scarce resources and real hardware.

There are two main options to set up a virtual ECU on PC:
 Re-host the native binary code using chip simulation. The native ECU code

(binary) is executed on PC by emulating the instruction set of the ECU pro-
cessor [3]. This requires no access to the C code.

 Re-target the C code. Compile the C code of the ECU for execution on
Windows PC. Obviously, this requires access to the C code to build a
Windows executable or DLL.

The paper is structured as follows: In the next section, we describe how we have vir -
tualized the transmission controller of the ZF HP8 automatic transmission, and list
key differences between the real and the virtual TCU. Section 3 presents some ap-
plications of this virtualization. Section 4 concludes with a brief outlook on future
work.

& � �������������	�������'(��)*��������������	�������	

& � ����������	
�������	�������	���	������	��

The shift strategy of a transmissions is often developed by an OEM, while the re-
maining control software comes from a supplier. For the ZF 8HP transmission con-
sidered here, about 30% of the shift strategy module is generated with TargetLink
from a model developed with MATLAB/Simulink. The remaining part of that module
is hand-coded using C.

We used the virtual ECU tool Silver [2] to re-target the entire control code as a
Windows dynamic link library (dll). We could have used Silver's chip simulator [3] as
well, but decided to use here the variant based on re-targeting for two reasons:

 Re-targeted code runs about 10 times faster on a PC than a corresponding
chip simulation. Therefore, chip simulation is most useful in cases where re-
targeting the C code is not possible.

 The control software for the 8HP transmission was partly developed using the
virtual ECU tool SoftCar [1]. For that reason, a re-targeted version of the con-
trol software was already available as Windows libraries (.lib files created with
MS Visual Studio).

Silver provides a framework for re-targeting control code to Windows. This frame-
work, called Silver Basis Software (SBS), uses the same source files that are avail -
able during the normal ECU development, but bypasses the original basic software
of the ECU with services supplied by Silver:

 The RTOS is replaced by a simple execution loop in Silver. This runs tasks
either initially, periodically with defined offsets, or at certain events (interrupts).

 The DBC files describing the CAN communication of the ECU are used to
emulate CAN processing.

 The ASAP2/A2L file describing all tunable and all measurable variables of the
ECU is used to bypass analogue input and output processing of the ECU. For
example, instead of simulating the low-level processing of a certain pulse-
width modulated (PWM) signal that encodes the target current for a magnetic
valve, we directly use the corresponding high-level current variable. This might
be a 16-bit unsigned integer, which - after application of an associated scaling
rule - represents the target current in Ampere. The scaling rule is part of the
A2L description of the integer variable. Silver knows how to apply directly and
how to invert the rule, and uses this to automatically convert the raw integer
values to physically meaningful values during simulation (and vice-versa). This
way, low-level processing of the basic software can be easily bypassed. In our
example, the target current in Ampere is directly fed into the simulation model
of the magnetic valve, which is part of the vehicle model described in section
2.3. A similar mechanism is used to bypass the low-level stages (AD conver-
sion, signal filters) used for sensor value acquisition.

We used the above framework to re-target the AGS module of the TCU, based on
the C code, both hand-coded and generated. This took us about three person days.
To validate the result in Silver, the re-targeted AGS module was then simulated us-
ing measured inputs. The PC simulation commanded exactly the same gear shifts as
those measured in the real vehicle. Encouraged by this quick success, we re-tar-
geted then the entire TCU, based on the Windows library received from ZF.

3

The PC simulation of the 8HP transmission system can be used as follows:

Open-loop analysis of measurements on PC: Use measurements (e.g. a MDF or
DAT file) taken on the road or on test rig to drive the virtual ECU on PC. This way it
becomes possible to look at all TCU variables in detail (lets say, 100.000). This gives
a fairly complete picture of the ECU behaviour. This usage of a virtual ECU is the
easiest to implement because it does not require any vehicle model.

Debugging on C source level: Attach the MS Visual Studio debugger to the virtual
ECU running in Silver to debug problems on C code level. On a real ECU, a runtime
exception like an integer division by zero or a memory access violation will typically
trigger an ECU reset. These kinds of problems are difficult to catch and analyse in
real-time environments, e.g. on a HiL system or on the road. With the virtual ECU,

